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1 The quartic equationx4 − px2 + qx − r = 0, wherep, q andr are real constants, has two pairs of equal
roots. Show thatp2 + 4r = 0 and state the value ofq. [6]

2 The curveC has polar equationr = e41 for 0 ≤ 1 ≤ !, where! is measured in radians. The length of
C is 2015. Find the value of!. [6]

3 Prove by mathematical induction that, for all positive integersn,
nÐ

r=1

1

�2r�2 − 1
= n

2n + 1
. [6]

State the value of
∞Ð

r=1

1

�2r�2 − 1
. [1]

4 Use the formula for tan�A − B� in the List of Formulae (MF10) to show that

tan−1�x + 1� − tan−1�x − 1� = tan−1
@

2

x2

A
. �3�

Deduce the sum ton terms of the series

tan−1
@

2

12

A + tan−1
@

2

22

A + tan−1
@

2

32

A +à . �4�

5 Let In = Ô
1
20

0

sin 2n1
cos1 d1, wheren is a non-negative integer.

(i) Use the identity sinP + sinQ � 2 sin1
2�P + Q�cos1

2�P − Q� to show that

In + In−1 = 2
2n − 1

, for all positive integersn. �5�

(ii) Find the exact value ofÔ
1
20

0

sin 81
cos1 d1. [4]

6 Let Ï = cos1 + i sin1. Use the binomial expansion of�1+ Ï�n, wheren is a positive integer, to show
that @

n
1

A
cos1 + @

n
2

A
cos 21 +à + @

n
n

A
cosn1 = 2n cosn

�1
21� cos

�1
2n1� − 1. �7�

Find @
n
1

A
sin1 + @

n
2

A
sin 21 +à + @

n
n

A
sinn1. �2�

7 The curveC has equationx2 + 2xy − 4y2 + 20= 0. Show that if the tangent toC at the point�x, y� is
parallel to thex-axis thenx + y = 0. [3]

Hence find the coordinates of the stationary points onC, and determine their nature. [7]
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8 A line, passing through the pointA �3, 0, 2�, has vector equationr = 3i + 2k + ,�2i + j − 2k�. It meets
the plane�, which has equationr.�i + 2j + k� = 3, at the pointP. Find the coordinates ofP. [3]

Write down a vectorn which is perpendicular to�, and calculate the vectorw, where

w = n × �2i + j − 2k�. �3�

The pointQ lies in� and is the foot of the perpendicular fromA to�. Use the vectorw to determine
an equation of the linePQ in the formr = u + -v. [4]

9 Find the particular solution of the differential equation

d2x

dt2 − 3
dx
dt

− 10x = 2 sint − 3 cost,

given that, whent = 0, x = 3.3 and
dx
dt

= 0.9. [11]

10 The curveC has equationy = 4x2 − 3x

x2 + 1
. Verify that the equation ofC may be written in the form

y = −1
2
+ �3x − 1�2

2�x2 + 1�
and also in the formy = 9

2
− �x + 3�2

2�x2 + 1�
. [3]

Hence show that−1
2 ≤ y ≤ 9

2. [2]

Without differentiating, write down the coordinates of theturning points ofC. [2]

State the equation of the asymptote ofC. [1]

Sketch the graph ofC, stating the coordinates of the intersections with the coordinate axes and the
asymptote. [3]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

The linear transformation T :>4 → >4 is represented by the matrixM, where

M =
�

1 2 3 4
1 −1 2 3
1 −3 3 5
1 4 2 2

�

.

The range space of T is denoted byV.

(i) Determine the dimension ofV. [3]

(ii) Show that the vectors

�
1
1
1
1

�

,

�
2−1−3
4

�

,

�
3
2
3
2

�

are a basis ofV. [5]

The set of elements of>4 which do not belong toV is denoted byW.

(iii) State, with a reason, whetherW is a vector space. [1]

(iv) Show that if the vector

�
x
yÏ
t

�

belongs toW thenx + y ≠ Ï + t. [5]

OR

One of the eigenvalues of the matrixM, where

M =
` 3 −4 2−4 ! 6

2 6 −2

a
,

is −9. Find the value of!. [3]

Find

(i) the other two eigenvalues,,1 and,2, of M, where,1 > ,2, [5]

(ii) corresponding eigenvectors for all three eigenvalues ofM. [3]

It is given thatx = ae1 + be2, wheree1 ande2 are eigenvectors ofM corresponding to the eigenvalues,1 and,2 respectively, anda andb are scalar constants. Show thatMx = pe1 + qe2, expressingp and
q in terms ofa andb. [3]
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